Experimental cancer therapy using restoration of NAD+ -linked 15-hydroxyprostaglandin dehydrogenase expression.
نویسندگان
چکیده
Preclinical and clinical evidence shows that cyclooxygenase-2 (Cox-2)-mediated prostaglandin E(2) (PGE(2)) overexpression plays an important role in tumor growth, metastasis, and immunosuppression. It has been shown that expression of NAD(+)-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a key enzyme responsible for PGE(2) inactivation, is suppressed in the majority of cancers, including breast and colon carcinoma. We have developed adenoviral vectors (Ad) encoding the 15-PGDH gene under control of the vascular endothelial growth factor receptor 1 (VEGFR1/flt-1; Adflt-PGDH) and the Cox-2 (Adcox-PGDH) promoters. The purpose of this study was to investigate cytotoxicity in vitro and therapeutic efficacy in vivo of 15-PGDH-mediated cancer therapy. The levels of PGE(2) and VEGF expression were correlated with PGE(2) receptor and Cox-2 and flt-1 expression in cancer cells. The in vitro study showed that Ad-mediated 15-PGDH expression significantly decreased proliferation and migration of cancer cells. Animal breast and colon tumor therapy studies showed that 15-PGDH gene therapy produced a significant delay in 2LMP and LS174T tumor growth. Combined therapy using 15-PGDH and anti-VEGF antibody (bevacizumab) significantly increased inhibition of growth of LS174T tumor xenografts in comparison with agents alone. These results suggest that 15-PGDH-mediated regulation of PGE(2) catabolism in the tumor microenvironment represents a novel approach for therapy of human breast and colon cancer.
منابع مشابه
Cancer Prevention Research NAD-Dependent 15-Hydroxyprostaglandin Dehydrogenase Regulates Levels of Bioactive Lipids in Non–Small Cell Lung Cancer
Elevated levels of procarcinogenic prostaglandins (PG) are found in a variety of human malignancies including non–small cell lung cancer (NSCLC). Overexpression of cyclooxygenase-2 and microsomal prostaglandin synthase 1 occurs in tumors and contributes to increased PG synthesis. NAD-dependent 15-hydroxyprostaglandin dehydrogenase (15PGDH), the key enzyme responsible for metabolic inactivation ...
متن کاملPrognostic Implication of 15-Hydroxyprostaglandin Dehydrogenase Down-Regulation in Patients with Colorectal Cancer
PURPOSE Prostaglandin (PG) E2 is known to be closely related to cancer progression and is inactivated by 15-hydroxyprostaglandin dehydrogenase (PGDH). 15-PGDH is shown to have tumor suppressor activity and to be down-regulated in various cancers, including colorectal cancer (CRC). Therefore, we evaluated the expression of 15-PGDH and its prognostic effect in patients with CRC. METHODS 15-PGDH...
متن کاملNicotinamide adenine dinucleotide-dependent 15-hydroxyprostaglandin dehydrogenase activity in hydatidiform mole tissue and choriocarcinoma cells.
Prostaglandins may occupy an important role in viral and chemical carcinogen-induced neoplasia. To evaluate the possible role of prostaglandin catabolism in neoplastic cells, we measured nicotinamide adenine dinucleotide-dependent 15-hydroxyprostaglandin dehydrogenase activity in hydatidiform mole tissue and in choriocarcinoma cells maintained in monolayer culture. The specific activity of nico...
متن کاملNonsteroidal anti-inflammatory drugs suppress glioma via 15-hydroxyprostaglandin dehydrogenase.
Studies have conjectured that nonsteroidal anti-inflammatory drugs (NSAID) inhibit growth of various malignancies by inhibiting cyclooxygenase-2 (COX-2) enzyme activity. Yet, several lines of evidence indicate that a COX-2-independent mechanism may also be involved in their antitumor effects. Here, we report that NSAIDs may inhibit the growth of glioblastoma multiforme (GBM) cells through COX-2...
متن کاملNAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer.
It has been reported that two inducible prostaglandin synthetic enzymes, cylooxygenase-2 (COX-2) and microsomal PGE synthase, are over-expressed in non-small cell lung cancer (NSCLC). Using quantitative reverse transcription-polymerase chain reaction, we analyzed RNA levels of the key prostaglandin catabolic enzyme, NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH), in 19 pairs of NSC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 8 11 شماره
صفحات -
تاریخ انتشار 2009